add yolov5 file

This commit is contained in:
gxt_kt 2024-08-07 00:56:59 +08:00
parent 2e7243e37a
commit 4349005f83

View File

@ -0,0 +1,397 @@
#pragma once
/*-------------------------------------------
Includes
-------------------------------------------*/
#include <dlfcn.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#define _BASETSD_H
#include "RgaUtils.h"
#include "debugstream.hpp"
#include "dianti.h"
#include "postprocess.h"
#include "preprocess.h"
#include "rknn_api.h"
#define PERF_WITH_POST 1
static void dump_tensor_attr(rknn_tensor_attr *attr) {
std::string shape_str = attr->n_dims < 1 ? "" : std::to_string(attr->dims[0]);
for (int i = 1; i < attr->n_dims; ++i) {
shape_str += ", " + std::to_string(attr->dims[i]);
}
printf(
" index=%d, name=%s, n_dims=%d, dims=[%s], n_elems=%d, size=%d, "
"w_stride = %d, size_with_stride=%d, fmt=%s, "
"type=%s, qnt_type=%s, "
"zp=%d, scale=%f\n",
attr->index, attr->name, attr->n_dims, shape_str.c_str(), attr->n_elems,
attr->size, attr->w_stride, attr->size_with_stride,
get_format_string(attr->fmt), get_type_string(attr->type),
get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
}
static double __get_us(struct timeval t) {
return (t.tv_sec * 1000000 + t.tv_usec);
}
static unsigned char *load_data(FILE *fp, size_t ofst, size_t sz) {
unsigned char *data;
int ret;
data = NULL;
if (NULL == fp) {
return NULL;
}
ret = fseek(fp, ofst, SEEK_SET);
if (ret != 0) {
printf("blob seek failure.\n");
return NULL;
}
data = (unsigned char *)malloc(sz);
if (data == NULL) {
printf("buffer malloc failure.\n");
return NULL;
}
ret = fread(data, 1, sz, fp);
return data;
}
static unsigned char *load_model(const char *filename, int *model_size) {
FILE *fp;
unsigned char *data;
fp = fopen(filename, "rb");
if (NULL == fp) {
printf("Open file %s failed.\n", filename);
return NULL;
}
fseek(fp, 0, SEEK_END);
int size = ftell(fp);
data = load_data(fp, 0, size);
fclose(fp);
*model_size = size;
return data;
}
static int saveFloat(const char *file_name, float *output, int element_size) {
FILE *fp;
fp = fopen(file_name, "w");
for (int i = 0; i < element_size; i++) {
fprintf(fp, "%.6f\n", output[i]);
}
fclose(fp);
return 0;
}
class Yolov5 {
public:
/*-------------------------------------------
Functions
-------------------------------------------*/
std::string model_path_;
Yolov5() {}
void Init(const std::string &model_path) {}
~Yolov5() {
deinitPostProcess();
// release
rknn_destroy(ctx);
if (model_data) {
free(model_data);
}
}
rknn_context ctx;
unsigned char *model_data;
int ret;
void LoadModel() {
int img_width = 0;
int img_height = 0;
int img_channel = 0;
const float nms_threshold = NMS_THRESH; // 默认的NMS阈值
const float box_conf_threshold = BOX_THRESH; // 默认的置信度阈值
struct timeval start_time, stop_time;
// char *model_name = (char *)argv[1];
// char *input_path = argv[2];
std::string option = "letterbox";
std::string out_path = "./out.jpg";
if (argc >= 4) {
option = argv[3];
}
if (argc >= 5) {
out_path = argv[4];
}
// init rga context
rga_buffer_t src;
rga_buffer_t dst;
memset(&src, 0, sizeof(src));
memset(&dst, 0, sizeof(dst));
printf(
"post process config: box_conf_threshold = %.2f, nms_threshold = "
"%.2f\n",
box_conf_threshold, nms_threshold);
/* Create the neural network */
printf("Loading mode...\n");
int model_data_size = 0;
model_data = load_model(model_name, &model_data_size);
ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL);
if (ret < 0) {
printf("rknn_init error ret=%d\n", ret);
return -1;
}
rknn_sdk_version version;
ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &version,
sizeof(rknn_sdk_version));
if (ret < 0) {
printf("rknn_init error ret=%d\n", ret);
return -1;
}
printf("sdk version: %s driver version: %s\n", version.api_version,
version.drv_version);
rknn_input_output_num io_num;
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
if (ret < 0) {
printf("rknn_init error ret=%d\n", ret);
return -1;
}
printf("model input num: %d, output num: %d\n", io_num.n_input,
io_num.n_output);
rknn_tensor_attr input_attrs[io_num.n_input];
memset(input_attrs, 0, sizeof(input_attrs));
for (int i = 0; i < io_num.n_input; i++) {
input_attrs[i].index = i;
ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]),
sizeof(rknn_tensor_attr));
if (ret < 0) {
printf("rknn_init error ret=%d\n", ret);
return -1;
}
dump_tensor_attr(&(input_attrs[i]));
}
rknn_tensor_attr output_attrs[io_num.n_output];
memset(output_attrs, 0, sizeof(output_attrs));
for (int i = 0; i < io_num.n_output; i++) {
output_attrs[i].index = i;
ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]),
sizeof(rknn_tensor_attr));
dump_tensor_attr(&(output_attrs[i]));
}
int channel = 3;
int width = 0;
int height = 0;
if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) {
printf("model is NCHW input fmt\n");
channel = input_attrs[0].dims[1];
height = input_attrs[0].dims[2];
width = input_attrs[0].dims[3];
} else {
printf("model is NHWC input fmt\n");
height = input_attrs[0].dims[1];
width = input_attrs[0].dims[2];
channel = input_attrs[0].dims[3];
}
printf("model input height=%d, width=%d, channel=%d\n", height, width,
channel);
}
void Infer() {
rknn_input inputs[1];
memset(inputs, 0, sizeof(inputs));
inputs[0].index = 0;
inputs[0].type = RKNN_TENSOR_UINT8;
inputs[0].size = width * height * channel;
inputs[0].fmt = RKNN_TENSOR_NHWC;
inputs[0].pass_through = 0;
// 读取图片
printf("Read %s ...\n", input_path);
cv::Mat orig_img = cv::imread(input_path, 1);
if (!orig_img.data) {
printf("cv::imread %s fail!\n", input_path);
return -1;
}
cv::Mat img;
cv::cvtColor(orig_img, img, cv::COLOR_BGR2RGB);
img_width = img.cols;
img_height = img.rows;
printf("img width = %d, img height = %d\n", img_width, img_height);
// 指定目标大小和预处理方式,默认使用LetterBox的预处理
BOX_RECT pads;
memset(&pads, 0, sizeof(BOX_RECT));
cv::Size target_size(width, height);
cv::Mat resized_img(target_size.height, target_size.width, CV_8UC3);
// 计算缩放比例
float scale_w = (float)target_size.width / img.cols;
float scale_h = (float)target_size.height / img.rows;
if (img_width != width || img_height != height) {
// 直接缩放采用RGA加速
if (option == "resize") {
printf("resize image by rga\n");
ret = resize_rga(src, dst, img, resized_img, target_size);
if (ret != 0) {
fprintf(stderr, "resize with rga error\n");
return -1;
}
// 保存预处理图片
cv::imwrite("resize_input.jpg", resized_img);
} else if (option == "letterbox") {
printf("resize image with letterbox\n");
float min_scale = std::min(scale_w, scale_h);
scale_w = min_scale;
scale_h = min_scale;
letterbox(img, resized_img, pads, min_scale, target_size);
// 保存预处理图片
cv::imwrite("letterbox_input.jpg", resized_img);
} else {
fprintf(stderr,
"Invalid resize option. Use 'resize' or 'letterbox'.\n");
return -1;
}
inputs[0].buf = resized_img.data;
} else {
inputs[0].buf = img.data;
}
gettimeofday(&start_time, NULL);
rknn_inputs_set(ctx, io_num.n_input, inputs);
rknn_output outputs[io_num.n_output];
memset(outputs, 0, sizeof(outputs));
for (int i = 0; i < io_num.n_output; i++) {
outputs[i].index = i;
outputs[i].want_float = 0;
}
// 执行推理
ret = rknn_run(ctx, NULL);
ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
gettimeofday(&stop_time, NULL);
printf("once run use %f ms\n",
(__get_us(stop_time) - __get_us(start_time)) / 1000);
// 后处理
detect_result_group_t detect_result_group;
std::vector<float> out_scales;
std::vector<int32_t> out_zps;
for (int i = 0; i < io_num.n_output; ++i) {
out_scales.push_back(output_attrs[i].scale);
out_zps.push_back(output_attrs[i].zp);
}
post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf,
(int8_t *)outputs[2].buf, height, width, box_conf_threshold,
nms_threshold, pads, scale_w, scale_h, out_zps, out_scales,
&detect_result_group);
// 画框和概率
char text[256];
for (int i = 0; i < detect_result_group.count; i++) {
detect_result_t *det_result = &(detect_result_group.results[i]);
sprintf(text, "%s %.1f%%", det_result->name, det_result->prop * 100);
printf("%s @ (%d %d %d %d) %f\n", det_result->name, det_result->box.left,
det_result->box.top, det_result->box.right, det_result->box.bottom,
det_result->prop);
int x1 = det_result->box.left;
int y1 = det_result->box.top;
int x2 = det_result->box.right;
int y2 = det_result->box.bottom;
rectangle(orig_img, cv::Point(x1, y1), cv::Point(x2, y2),
cv::Scalar(256, 0, 0, 256), 3);
putText(orig_img, text, cv::Point(x1, y1 + 12), cv::FONT_HERSHEY_SIMPLEX,
0.4, cv::Scalar(255, 255, 255));
}
// gxt: add my process here ==============begin
// 相机内参
Eigen::Matrix3d camera_matrix;
camera_matrix << 787.22316869, 0.0, 628.91534144, 0.0, 793.45182,
313.46301416, 0.0, 0.0, 1.0;
// int my_width=orig_img.cols;
// int my_height=orig_img.rows;
DistanceEstimator estimator(camera_matrix, img_width, img_height);
std::vector<Box> rens;
std::vector<Box> diantis;
gDebug(detect_result_group.count);
for (int i = 0; i < detect_result_group.count; i++) {
detect_result_t *det_result = &(detect_result_group.results[i]);
// sprintf(text, "%s %.1f%%", det_result->name, det_result->prop * 100);
// printf("%s @ (%d %d %d %d) %f\n", det_result->name,
// det_result->box.left, det_result->box.top,
// det_result->box.right, det_result->box.bottom,
// det_result->prop);
Box box;
box.x = (double)(det_result->box.left + det_result->box.right) / 2.0 /
img_width;
box.y = (double)(det_result->box.top + det_result->box.bottom) / 2.0 /
img_height;
box.w = (double)std::abs(det_result->box.right - det_result->box.left) /
img_width;
box.h = (double)std::abs(det_result->box.bottom - det_result->box.top) /
img_height;
std::string class_name = det_result->name;
if (class_name == "Dianti") {
diantis.push_back(box);
} else if (class_name == "Ren") {
rens.push_back(box);
}
// int x1 = det_result->box.left;
// int y1 = det_result->box.top;
// int x2 = det_result->box.right;
// int y2 = det_result->box.bottom;
// rectangle(orig_img, cv::Point(x1, y1), cv::Point(x2, y2),
// cv::Scalar(256, 0, 0, 256), 3); putText(orig_img, text, cv::Point(x1,
// y1 + 12), cv::FONT_HERSHEY_SIMPLEX, 0.4, cv::Scalar(255, 255, 255));
}
DealImage(estimator, orig_img, rens, diantis);
// gxt: add my process here ==============end
printf("save detect result to %s\n", out_path.c_str());
imwrite(out_path, orig_img);
ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
// 耗时统计
int test_count = 10;
gettimeofday(&start_time, NULL);
for (int i = 0; i < test_count; ++i) {
rknn_inputs_set(ctx, io_num.n_input, inputs);
ret = rknn_run(ctx, NULL);
ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
#if PERF_WITH_POST
post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf,
(int8_t *)outputs[2].buf, height, width, box_conf_threshold,
nms_threshold, pads, scale_w, scale_h, out_zps, out_scales,
&detect_result_group);
#endif
ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
}
gettimeofday(&stop_time, NULL);
printf("loop count = %d , average run %f ms\n", test_count,
(__get_us(stop_time) - __get_us(start_time)) / 1000.0 / test_count);
}
};